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Two algorithms, the objective function method (OFM) and the eigenvector algorithm
(EVA), of the inverse "lter estimation are applied to extract the impulsive impacting signals.
Both algorithms maximize the estimation of the cumulants with observed data only. The
resolution of the reconstructed signals are improved from the observed (measured) signals.
Therefore, the &&clean'' impacting signals can be compared to the known impacting
phenomena to determine their origin. The performance of both algorithms are investigated
and these appear to perform well.
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1. INTRODUCTION

Impacting problems have received attention for over a decade in the "eld of noise and
vibration [1}14]. Researchers were focused on details of impact dynamics, and the methods
of bifurcation theory were applied. Rich phenomena were discovered in mathematical
models and also validated in experimental models, which included periodic and chaotic
chattering. Such knowledge provides the understanding of impacting problems in practice.
In industrial applications, such as piping systems, detection and classi"cation of impacting
signals from remote sensors are of major interest. Impacting signals, which carry signatures
of the condition of a system, normally cannot be measured directly from the impacting
sources. In other words, the original impacting signals are modi"ed through propagation
and contaminated by unknown noise. In order to monitor system condition, one needs the
data from a clear impulsive impact response and the time between impacts. This paper
focuses on the examination of the observed signals (measured signals) z(i ) from the
unknown system h (l ) as described in equation (1), where the original signals x (i ) are also
unknown. The aim is to develop an inverse "lter g (l ), see equation (2), to reconstruct the
impacting signals y (i ), i.e., y(i) should approach x (i ) as closely as possible. Two existing
algorithms, the objective function method (OFM) [15, 16] and the eigenvector algorithm
(EVA) [17, 18], for estimation of the coe$cients of the inverse "lter are applied. Both
algorithms are based on higher order statistics [19}22] and only the output signals are
required.

In conventional deconvolution, the system and the system's output are known, and the
problem is to estimate the input. In blind deconvolution both the system and the system's
input are not known, yet the system's input is desired. In such cases, assumptions of
a general nature do lead to valid solutions. For example, the fact that the system and the
deconvolution "lter must be a unit pulse up to a scale factor and delay can be turned into an
useful criterion. The EVA [17, 18] is a method of this type. In this particular problem, the
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input (impacting) signals share important properties with the re#ection coe$cient
extraction problem in seismology. These are spiky and sparse time series, and one
OFM-type method has been successfully applied [23}26].

The organization of this paper is as follows. In Section 2, two algorithms of the inverse
"lter estimation are reviewed. In Section 3, three sets of impacting data measured from
a cantilever vibrating beam with an inelastic endstop are examined to establish the
applicability of the two algorithms. The performance of both algorithms are compared.
Further, classi"cation of impacting signals is made from reconstructed signals. In Section 4,
the actual impact forces are provided to test the ability of the algorithms. The comparison of
the actual forces and the recovered forces are made. Finally, the conclusions are stated in
Section 5.

2. REVIEW OF THE METHODS

Using the observed signal z(i) of a linear, time-invariant system h (l ), the original signal
x(i) is to be recovered by an inverse "lter g (l ), where a certain time delay and an overall
scale factor may be allowed. For a "nite impulse response (FIR) model, the system is
described as

z (i )"
L
+
i/1

h (l )x (i!l ) (1)

and the aim is to "nd an optimal inverse "lter g (l) to achieve

y (i )"
L
+
i/1

g(l )z (i!l ), (2)

where y (i )+bx (i!i
0
) and i, i

0
are integers, b is a scale factor and ¸ is the "lter length. Two

algorithms, the objective function method (OFM) and the eigenvector algorithm (EVA), are
applied in the following investigation; they are based on higher order statistics.

2.1. THE OBJECTIVE FUNCTION METHOD

An objective function with kth order statistics of blind deconvolution to recover the
signals with spikes shown in Nandi et al. [15] and Lee and Nandi [16] is

O
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(g(l ))"
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. (3)

For comparison with the EVA method, in the next subsection, we set k"4. For more
details of this method with k'2, one can refer to references [15, 16]. Optimizing this
objective function with respect to the "lter coe$cient g (l ) and using Ly(i)/Lg (l )"z(i!l )
from equation (2), one gets
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Equation (4) can be written in matrix from b"Ag, where b is a column vector computed
from the left-hand side of the equation containing the cross-correlation of the third order
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y(i ) and z (i ). A is a Toeplitz autocorrelation matrix with dimension (¸]¸) containing the
autocorrelation of the observed signal z(i ), and g is the column vector of the required
coe$cients of the inverse "lter g (l ) for l"1 to ¸. The algorithm is summarized as below.

Step 1: Set initial optimal "lter coe$cients g (0) and Toeplitz autocorrelation matrix A.
Step 2: Compute the output signals y (0) using the input signal z (0) and optimal "lter

coe$cients g (0), i.e., equation (2).
Step 3: Compute the column vector b (1) using y (0) and input signal z (0) , i.e., left-hand side

of equation (4). Solve new optimal "lter coe$cients g (1)"A~1b (1).
Step 4: Compute the error criterion

e"(g (1)!kg (0))/kg (0) (5)
and

k"(E ((g (0))2)/E ((g (1))2))1@2, (6)

where E ( ') is the expected value.
Step 5: If E (e))0)01, then stop the process; if E (e)'0)01, then set g (0)"g (1) and go to

step 2.

2.2. THE EIGENVECTOR ALGORITHM

In the application to communication systems, references [17, 18] and the references
therein, an eigenvector method with kurtosis (fourth order statistics) were used to solve the
problem of blind equalization. In this paper, it is applied to the current problem of
recovering the impacting signals. The criterion is to maximize the cross-cumulant of the
output signals y(i) reference signals r (i), i.e.,

maximize Dcyr
4

(0, 0) D with respect to r
yy

(0), (7)
where

cyr
4

(0, 0)"EMDy (i) D2 D r (i ) D2N![E MDy (i) D2NEMDr (i ) D2N
(8)

#DEMy* (i) r(i )ND2#DEMy (i) r(i )ND2]

and r
yy

(0) is the autocorrelation sequence. By using equation (2) with y (i)"
z(i )? g(l )"z*g, where ? denotes convolution and * denotes the complex conjugate,
equation (7) can be rewritten as

maximize Dg*Czr
4

g D with respect to g*R
zz

g, (9)

where Czr
4

is the cross-cumulant matrix R
zz

is the autocorrelation matrix, both with
dimension (¸]¸). The optimization of equation (9) leads to the eigenvector problem

Czr
4

g
EV

"jR
zz

g
EV

. (10)

The coe$cient vector g
El is obtained by choosing the eigenvector of R~1

zz
Czr

4
associated with

the maximum eigenvalue j. The algorithm is summarized as below.

Step 1: Set initial coe$cients f (0) for the reference system and set iteration d"0 and the
total iteration number D.
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Step 2: Compute the output signals r (0) using the input signal z (0) and reference "lter
coe$cients f (d). Compute the matrix R

zz
and Czr

4
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Step 3: Calculate the most signi"cant eigenvector g
EV

of R~1
zz

Czr
4

.
Step 4: Let f (d`1)"g

EV
and go to step 2 until d'D.

3. RESULTS

Three subsections are included in this section. The experimental set-up and simulation
results of impacting system are presented in Section 3.1. The criterion of the performance
assessment is discussed in Section 3.2, and the measured (observed) signals are examined in
Section 3.3 using the OFM and the EVA algorithms. Furthermore, the e!ect of the
additional noise to both algorithms is discussed.

3.1. MEASURED SIGNALS

The observed signals are measured from a vibrating cantilever beam with an inelastic
endstop, and the system is driven by harmonic oscillation. The experimental set-up is shown
in Figure 1. The simulation results of the impacting response are illustrated in Figure 2,
using a bifurcation diagram for a variety of driving frequencies. The results show that the
impact resonances occur at 20 and 40 Hz, respectively, and the irregular chattering occurs
at the region between these two resonances. The validation of the experimental and
simulation results are discussed in references [12}14]. Four types of impacting are
characterized in di!erent regions of driving frequency. They are complete chattering
((1 Hz), incomplete chattering (1}10Hz), periodic chattering (10}25Hz) and chaotic
chattering (26}30Hz). For more details of the local and global dynamic structures, one can
Figure 1. Experimental model of the cantilever beam with an inelastic endstop. The dimension of the aluminium
beam is 500mm]18mm]3mm.



Figure 2. Bifurcation diagram of the cantilever beam with an inelastic endstop (with zero gap size). The solution
was plotted by using single-mode summation (numerical data).
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refer to references [1}14] and references therein. The data shown in Figures 3(a), 4(a) and
5(a) are normalized acceleration signals (impacting responses) recorded at a sample rate
4000 Hz at di!erent driving frequencies 8, 20 and 28 Hz respectively. The original impacting
signals have been propagated through the structure. Therefore, one needs clear impulsive
impacting signals to detect and classify the patterns of the original condition. In the
following subsections, these observed signals will be processed by the two aforementioned
algorithms.

3.2. PERFORMANCE ASSESSMENT

As the assumption in these current problems is that the original impacting signals are
unknown, the comparison of the reconstructed signals y (i ) to the original signals x (i ) is not
available. However, the trimmed standard deviation (¹SD) of the observed signals and
reconstructed signals can be computed. For a given N samples of signal y (i), sort y(i) in
increasing order

M>
i
, i"1, 2,2 , NN, where >

1
)>

2
)2)>

N
(13)

and ¹SD which is de"ned as

¹SD"C
1

N!2¹

N~T
+

i/T`1

(>
i
!¹M )2D

1@2
(14)

can be considered as noise in that it is a measure of energy not in the peaks, and the trimmed
mean ¹M is de"ned as

¹M"

1

N!2¹

N~T
+

i/T`1

>
i
, (15)



Figure 3. Case 1: 8 Hz driving frequency. (a) The observed signals. (b) The reconstructed signals using the OFM
algorithm. (c) The reconstructed signals using the EVA algorithm.
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where ¹ is the length of the truncated samples with the nearest integer of cN, where c is the
percent of the highest and lowest data. The coe$cient c can be a complex function due to
the reverberation e!ect and determined by experimental experience. Thus, a small value of
¹SD indicates a good estimation of inverse "lter.



Figure 4. Case 2: 20 Hz driving frequency. (a) The observed signals. (b) The reconstructed signals using the
OFM algorithm. (c) The reconstructed signals using the EVA algorithm.
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The choice of ¹SD has two advantages as a performance criterion: (1) it can be measured
without knowledge of the original signals which is the situation in practical problems, and
(2) it brings clear and consistent results when looking at various plots and tables of
numbers.



Figure 5. Case 3: 28 Hz driving frequency. (a) The observed signals. (b) The reconstructed signals using the
OFM algorithm. (c) The reconstructed signals using the EVA algorithm.
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3.3. RECONSTRUCTED SIGNALS

In the following estimation of the inverse "lter, the "lter length is "xed at 200 and the data
length is 4000. The value of the ¹SD is computed by "xed c"0)05 to exclude the largest
and smallest spikes, i.e., outliers.
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3.3.1. Case 1: 8 Hz driving frequency

The data shown in Figure 3(a) are the observed signals, and the results shown in Figure 3(b)
and 3(c) are the reconstructed signals using the OFM and the EVA algorithm respectively.
The resolution of impacting signals are improved by both methods. The values of the ¹SD
for observed signals is 0)056 and for reconstructed signals are 0)011 (OFM) and 0)010 (EVA),
shown in Table 1. The results show that the values of ¹SD (reconstructed) are reduced when
compared to the values of ¹SD (observed). In fact, the impulsive signals are
extracted and the contaminated signals are suppressed. The performances shown in Tables
3 (OFM) and 4 (EVA) are computed as

¹SD (observed)!¹SD (reconstructed)

¹SD (observed)
]100%. (16)

Thus, the performance can easily be indicated by a number of percentage. Both algorithms
perform well for the observed signals and giving as much as 80)5 (OFM) and 81)6% (EVA)
improvement.

Additional arti"cial Gaussian noise of 10 dB is added to the signals in Figure 3(a) and
shown in Figure 6(a). The additional signal-to-noise ratio (SNR) is de"ned as

SNR"10 log
10

(p2
z
/p2

n
), (17)

where p2
z

is variance of the observed signals and p2
n

is additive noise. The results shown in
Figure 6(b) and 6(c) are the reconstructed signals from the signals in Figure 6(a). These
indicate that the noise #oor in Figure 6(b) and 6(c) are higher than Figure 3(b) and 3 (c), i.e.,
the values of ¹SD, 0)026 (OFM) and 0)031 (EVA), in Table 2 are greater than the values of
¹SD, 0)011 (OFM) and 0)010 (EVA), in Table 1. This is the e!ect of the additional noise but
as the results show the impacting peaks are extracted correctly. The performances o!er
59)7% (OFM) and 51)0% (EVA) improvement from the noisy observed data, see Tables 3
and 4.

3.3.2. Case 2: 20Hz driving frequency

The data shown in Figure 4(a) are the observed signals at 20 Hz driving frequency and the
reconstructed signals are shown in Figure 4(b) and 4(c) using the OFM and EVA
algorithms. The results shown in Figures 7(a)}(c) are with 10 dB additional noise. Referring
to Table 1, the value of ¹SD for observed signals is reduced from 0)076 to 0)018 (OFM) and
0)018 (EVA) for reconstructed signals. With additional noise, see Table 2, the value of ¹SD
is reduced from 0)079 to 0)036 OFM and 0)036 (EVA). The performances o!er around 76%
improvement for observed signals only and 55% for additional noise data, see Tables 3 and 4.
TABLE 1

¹he value of ¹SD: no additional noise

Observed Reconstructed Reconstructed
signals signals (OFM) signals (EVA)

Case 1 0)056 0)011 0)010
Case 2 0)076 0)018 0)018
Case 3 0)062 0)013 0)012



Figure 6. Case 1: With additional 10 dB Gaussian noise. (a) The observed signals. (b) The reconstructed signals
using the OFM algorithm. (c) The reconstructed signals using the EVA algorithm.
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From the results of the reconstructed signals shown in Figures 3 and 4, i.e., the
comparison of the cases 1 and 2, one can see the patterns are di!erent. Both cases are
periodic impacting motions, but case 1 has two impacts per period while case 2 has one
impact per period. The impacting frequency can be detected from the estimation of the time
between impacts using the reconstructed signals. The times between each period of



TABLE 2

¹he value of ¹SD: with additional 10 dB noise

Observed Reconstructed Reconstructed
signals signals (OFM) signals (EVA)

Case 1 0)064 0)026 0)031
Case 2 0)079 0)036 0)036
Case 3 0)071 0)028 0)035

TABLE 3

OFM performance (%)

Additional noise Case 1 Case 2 Case 3

SNR"R dB 80)5 76)1 78)4
SNR"10 dB 59)7 54)9 60)3

TABLE 4

E<A performance (%)

Additional noise Case 1 Case 2 Case 3

SNR"R dB 81)6 76)4 80)1
SNR"10 dB 51)0 54)9 51)2
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impacting are 0)124 and 0)052 s for cases 1 and 2 respectively. Thus, the driving frequencies
are estimated to be 8)06 and 19)23Hz which are close to the actual values of 8 and 20 Hz
respectively. The motions of these impacting are classi"ed as an incompleted chattering
(case 1) and the resonance chattering (case 2) corresponding to Figure 2.

3.3.3. Case 3: 28 Hz driving frequency

The observed signals of this class motions are shown in Figures 5(a) and 8(a)
with additional noise. The reconstructed signals of these two sets of data are shown in
Figure 5(b) and 5(c), and Figure 8(b) and 8(c). The improvement of both algorithms are
78)4% (OFM) and 80)1% (EVA) for observed signals only and 60)3% (OFM) and 51)2%
(EVA) for additional noise data, see Tables 3 and 4.

The results shown in Figure 5(b) and 5(c) clearly suggest that this class of impacting is not
periodic and they are veri"ed as chaotic impacting motions. This disordered impacting
vibration may cause a fault alarm and the detection of this problem is important in
industrial applications. Compared to case 1 (incomplete chattering) and case 2 (periodic
resonance chattering) the exact estimation of driving frequency of this case is not possible
because the impact time is irregular. But using the present algorithms, clean spiky signals
and the impacting motion with periodic or aperiodic can be distinguished. As the result of
case 2 show the impact resonance occurs at 20Hz in the bifurcation diagram in Figure 2,



Figure 7. Case 2: With additional 10 dB Gaussian noise. (a) The observed signals. (b) The reconstructed signals
using the OFM algorithm. (c) The reconstructed signals using the EVA algorithm.

956 J.-Y. LEE AND A. K. NANDI
and the region of chaotic chattering is bounded between periodic chattering at 20 and
40 Hz, i.e., impacting resonance. Therefore, one can estimate the present case in particular
region of (26}30) Hz via detecting the periodic chattering in the region of (20}40) Hz.



Figure 8. Case 3: With additional 10 dB Gaussian noise. (a) The observed signals. (b) The reconstructed signals
using the OFM algorithm. (c) The reconstructed signals using the EVA algorithm.
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3.3.4. ¹he e+ect of the additional noise

The principle of both algorithms is to maximize the estimation of the kurtosis, see
equations (4) and (7). The e!ect of this process is to extract relatively larger spikes.
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Theoretically, the algorithms are una!ected by the symmetric (Gaussian) noise because the
cumulant of this class signals is zero when statistic order is greater than two. But if the
additional noise is too high, the original impacting peaks may be buried. In the above
examination of the algorithms, with the additional noise of 10 dB they perform well but the
improvements are reduced, see Tables 3 and 4. For further noise level of case 1, the
sub-impact peaks may be buried. But in case 2 the impact peaks are more signi"cant, thus
a higher noise level can be accepted.
Figure 9. (a) Input signals xN (i ). (b) Output (observed) signals zN (i ). (c) Reconstructed signals yN (i).
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4. DISCUSSION

In the above results, the actual impacting forces cannot be con"rmed because the
recovered impact forces are compared with the remote measurements. In order to test the
Figure 10. (a) Impulse response of the estimated inverse "lter g(l ). (b) Impulse response of the estimated system
"lter h1 (l ). (c) The convolution of h1 (l ) and g (l ). The estimation is based on case 1 data (with 8 Hz driving frequency).
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ability of these algorithms to recover impact forces blindly, the original (input) impact forces
need to be known. To provide testing and convincing evidence of this, the input forces xN (i )
shown in Figure 9(a) are introduced and the system "lter hM (l ) is estimated from the inverse
"lter g (l ). Using the measured data in Figure 3(a) and the OFM scheme, the coe$cients of
the "lter g (l ) are estimated and shown in Figure 10(a). By taking the discrete Fourier
transform of the series in Figure 9(a), i.e.,

G(k)"
L
+
l/1

g (l ) e~+(2n@L), (18)

where ¸ is the "lter length, the coe$cients of the "lter hM (l ) can be estimated from the inverse
Fourier transform of HM (k)"1/G (k), i.e.,

hM (l )"
1

¸

L
+
k/1

HM (k) e+(2n@L). (19)

The resulting impulse response, hM (l ), is shown in Figure 10(b). The convolution result of the
"lter coe$cients hM (l ) and g (l ) is shown in Figure 10(c). This unit impulse response con"rms
that the estimated system "lter hM (l ) represents the vibration condition at 8 Hz driving
frequency, refer to Section 3.3.1.
Figure 11. (a) Observed signals zN (i ) with additional 10 dB Gaussian noise. (b) Reconstructed signals.
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Applying the simulated input signals xN (i ) in Figure 9(a) to the estimated system "lter hM (l ),
the output (&&observed'' ) signals yN (i) are shown in Figure 9 (b). Following the blind
deconvolution scheme of the OFM, the reconstructed signals are shown in Figure 9(c).
Same as in the previous results, clear impacting signals are recovered. The di!erence of the
actual input signals xN (i ) and the reconstructed signals yN (i ) can be computed as a value of the
standard deviation (SD),

SD"C
1

N

N
+
i/1

(yN (i )!xN (i) )2D
1@2

. (20)

Therefore, small value of SD indicates a good estimation of the inverse "lter. The value of
SD for Figure 9(a) and 9(c) is 0)014 while the value of ¹SD (equation (14)) for Figure 9(c) is
0)010. Added additional 10 dB Gaussian noise to Figure 9(b) the results shown in Figure
11(a) are simulated &&observed'' signals, and the reconstructed signals are shown in Figure
11(b). The value of SD for Figures 9 (a) and 11(b) is 0)027 and the value of ¹SD for Figure
11(b) is 0)016. In the comparison of the values SD (the input forces are known) and ¹SD (the
input forces are unknown), the results show that they consistently indicate the performance
of the algorithm well.

5. CONCLUSION

Two algorithms based on higher order statistics were applied to extract the impulsive
impact responses. Consequently, the reconstructed signals can be compared to the known
impacting phenomena to determine their origin. Various impacting problems can be
classi"ed using the observed signals only. The performance of both algorithms are
examined and these perform well. The ability of the algorithms are also validated by the
comparison of the simulated input forces and the reconstructed forces, and the assessment
criterion shows that the values of ¹SD (blind) is a consistent indicator of the trend of the
values of SD (non-blind).
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